PhysicsAI got an error
I'm using hyperworks 2022.3 and I got a license.
I try to use physicsAI with demo files(HVAC), but I got an error.
What should I do?
[17:05:40] (INFO): --------------------------------------------------------------------------------------------------
[17:05:40] (INFO): 1. Building features and labels
[17:05:40] (INFO): --------------------------------------------------------------------------------------------------
[17:05:47] (INFO): Node features:
[17:05:47] (INFO): name: cae.coord
[17:05:47] (INFO): type: CONTINOUS
[17:05:47] (INFO): length: 3
[17:05:47] (INFO):
[17:05:47] (INFO): name: cae.part_id
[17:05:47] (INFO): type: CATEGORICAL
[17:05:47] (INFO): length: 2
[17:05:47] (INFO):
[17:05:47] (INFO): Edge features:
[17:05:47] (INFO): name: cae.direction
[17:05:47] (INFO): type: CONTINOUS
[17:05:47] (INFO): length: 4
[17:05:47] (INFO):
[17:05:47] (INFO): Node labels:
[17:05:47] (INFO): name: cae.results
[17:05:47] (INFO): subcase: Flow Solution
[17:05:47] (INFO): field: pressure
[17:05:47] (INFO): type: CONTINOUS
[17:05:47] (INFO): length: 1
[17:05:47] (INFO):
[17:05:47] (INFO): --------------------------------------------------------------------------------------------------
[17:05:47] (INFO): 2. Transforming training data
[17:05:47] (INFO): --------------------------------------------------------------------------------------------------
[17:05:49] (INFO): Transform: radioss_rigid_rename
[17:05:49] (INFO): Feature scalers:
[17:05:49] (INFO): Identity
[17:05:49] (INFO): RadiossRigidRename
[17:05:49] (INFO): Identity
[17:05:49] (INFO):
[17:05:49] (INFO): Label scalers:
[17:05:49] (INFO): Identity
[17:05:49] (INFO):
[17:05:49] (INFO): Transform: binarize_categorical
[17:05:49] (INFO): Feature scalers:
[17:05:49] (INFO): Identity
[17:05:49] (INFO): MultiLabelBinarizerStrict
[17:05:49] (INFO): Identity
[17:05:49] (INFO):
[17:05:49] (INFO): Label scalers:
[17:05:49] (INFO): Identity
[17:05:49] (INFO):
[17:05:49] (INFO): Transform: filter_const_comps
[17:05:49] (INFO): Feature scalers:
[17:05:49] (INFO): ConstantCompFilter
[17:05:49] (INFO): ConstantCompFilter
[17:05:49] (INFO): ConstantCompFilter
[17:05:49] (INFO):
[17:05:49] (INFO): Label scalers:
[17:05:49] (INFO): ConstantCompFilter
[17:05:49] (INFO):
[17:05:49] (INFO): Transform: cntr_vec_uni_edges_stnd10_res
[17:05:49] (INFO): Feature scalers:
[17:05:49] (INFO): CenteredUniformVectorScaler
[17:05:49] (INFO): Identity
[17:05:49] (INFO): UniformVectorScaler
[17:05:49] (INFO):
[17:05:49] (INFO): Label scalers:
[17:05:49] (INFO): StandardScaler10
[17:05:49] (INFO):
[17:05:50] (INFO): --------------------------------------------------------------------------------------------------
[17:05:50] (INFO): 3. Training/Validation split
[17:05:50] (INFO): --------------------------------------------------------------------------------------------------
[17:05:50] (INFO): Fraction : 1.0
[17:05:50] (INFO): # training : 7
[17:05:50] (INFO): # validation : 0
[17:05:50] (INFO):
[17:05:50] (INFO): --------------------------------------------------------------------------------------------------
[17:05:50] (INFO): 4. Initializing model
[17:05:50] (INFO): --------------------------------------------------------------------------------------------------
[17:05:50] (INFO): Total params: 64,201
[17:05:50] (INFO): Trainable params: 64,201
[17:05:50] (INFO): Non-trainable params: 0
[17:05:50] (INFO):
[17:05:50] (INFO): --------------------------------------------------------------------------------------------------
[17:05:50] (INFO): 5. Training
[17:05:50] (INFO): --------------------------------------------------------------------------------------------------
[17:05:56] (ERROR): *** INTERNAL PROGRAMMING ERROR ***
Answers
-
hi,
what are the training parameters that you're using?
could you share more details?
0 -
Adriano A. Koga_21884 said:
hi,
what are the training parameters that you're using?
could you share more details?
Umm.. my co-worker did exactly same jobs with same inputs, and it works normally.
So, I think it is not problem of inputs parameters.
(Of course, it is altair provided examples)
Training parameter is like:
Width: 30
Epochs: 100
Depth: 1
Learning Rate: 1e-3
Patience: 10 (Ealry Stopping On)
I did train locally.
Log:
[08:03:56] (INFO): ************************************************************************
[08:03:56] (INFO): ** **
[08:03:56] (INFO): ** **
[08:03:56] (INFO): ** Altair PhysicsAI 2022.3.0.24 **
[08:03:56] (INFO): ** **
[08:03:56] (INFO): ** Advanced Machine Learning Software **
[08:03:56] (INFO): ** from Altair Engineering, Inc. **
[08:03:56] (INFO): ** **
[08:03:56] (INFO): ** Build: 2514318 **
[08:03:56] (INFO): ************************************************************************
[08:03:56] (INFO): ** COPYRIGHT (C) 1996-2020 Altair Engineering, Inc. **
[08:03:56] (INFO): ** All Rights Reserved. Copyright notice does not imply publication. **
[08:03:56] (INFO): ** Contains trade secrets of Altair Engineering, Inc. **
[08:03:56] (INFO): ** Decompilation or disassembly of this software strictly prohibited. **
[08:03:56] (INFO): ************************************************************************
[08:03:56] (INFO):
[08:03:56] (INFO): --------------------------------------------------------------------------------------------------
[08:03:56] (INFO): 1. Building features and labels
[08:03:56] (INFO): --------------------------------------------------------------------------------------------------
[08:04:02] (INFO): Node features:
[08:04:02] (INFO): name: cae.coord
[08:04:02] (INFO): type: CONTINOUS
[08:04:02] (INFO): length: 3
[08:04:02] (INFO):
[08:04:02] (INFO): name: cae.part_id
[08:04:02] (INFO): type: CATEGORICAL
[08:04:02] (INFO): length: 2
[08:04:02] (INFO):
[08:04:02] (INFO): Edge features:
[08:04:02] (INFO): name: cae.direction
[08:04:02] (INFO): type: CONTINOUS
[08:04:02] (INFO): length: 4
[08:04:02] (INFO):
[08:04:02] (INFO): Node labels:
[08:04:02] (INFO): name: cae.results
[08:04:02] (INFO): subcase: Flow Solution
[08:04:02] (INFO): field: pressure
[08:04:02] (INFO): type: CONTINOUS
[08:04:02] (INFO): length: 1
[08:04:02] (INFO):
[08:04:02] (INFO): --------------------------------------------------------------------------------------------------
[08:04:02] (INFO): 2. Transforming training data
[08:04:02] (INFO): --------------------------------------------------------------------------------------------------
[08:04:04] (INFO): Transform: radioss_rigid_rename
[08:04:04] (INFO): Feature scalers:
[08:04:04] (INFO): Identity
[08:04:04] (INFO): RadiossRigidRename
[08:04:04] (INFO): Identity
[08:04:04] (INFO):
[08:04:04] (INFO): Label scalers:
[08:04:04] (INFO): Identity
[08:04:04] (INFO):
[08:04:04] (INFO): Transform: binarize_categorical
[08:04:04] (INFO): Feature scalers:
[08:04:04] (INFO): Identity
[08:04:04] (INFO): MultiLabelBinarizerStrict
[08:04:04] (INFO): Identity
[08:04:04] (INFO):
[08:04:04] (INFO): Label scalers:
[08:04:04] (INFO): Identity
[08:04:04] (INFO):
[08:04:04] (INFO): Transform: filter_const_comps
[08:04:04] (INFO): Feature scalers:
[08:04:04] (INFO): ConstantCompFilter
[08:04:04] (INFO): ConstantCompFilter
[08:04:04] (INFO): ConstantCompFilter
[08:04:04] (INFO):
[08:04:04] (INFO): Label scalers:
[08:04:04] (INFO): ConstantCompFilter
[08:04:04] (INFO):
[08:04:04] (INFO): Transform: cntr_vec_uni_edges_stnd10_res
[08:04:04] (INFO): Feature scalers:
[08:04:04] (INFO): CenteredUniformVectorScaler
[08:04:04] (INFO): Identity
[08:04:04] (INFO): UniformVectorScaler
[08:04:04] (INFO):
[08:04:04] (INFO): Label scalers:
[08:04:04] (INFO): StandardScaler10
[08:04:04] (INFO):
[08:04:06] (INFO): --------------------------------------------------------------------------------------------------
[08:04:06] (INFO): 3. Training/Validation split
[08:04:06] (INFO): --------------------------------------------------------------------------------------------------
[08:04:06] (INFO): Fraction : 1.0
[08:04:06] (INFO): # training : 7
[08:04:06] (INFO): # validation : 0
[08:04:06] (INFO):
[08:04:06] (INFO): --------------------------------------------------------------------------------------------------
[08:04:06] (INFO): 4. Initializing model
[08:04:06] (INFO): --------------------------------------------------------------------------------------------------
[08:04:06] (INFO): Total params: 64,201
[08:04:06] (INFO): Trainable params: 64,201
[08:04:06] (INFO): Non-trainable params: 0
[08:04:06] (INFO):
[08:04:06] (INFO): --------------------------------------------------------------------------------------------------
[08:04:06] (INFO): 5. Training
[08:04:06] (INFO): --------------------------------------------------------------------------------------------------
[08:04:12] (ERROR): *** INTERNAL PROGRAMMING ERROR ***0