Advantages:
(a) Computational efficiency:
The standard k-ε model is a classical model developed by turbulence researchers in the early 1970's, whereas the SA model is a recent model developed in the early 1990's with the objective of numerical efficiency and robustness. The SA model can perform much faster than the k-ε model for the same or better level of accuracy.
(
/emoticons/default_cool.png' alt='B)'> Accuracy as Low-Re Model:
Inherently, the SA model is effective as a low-Reynolds number model and provides a superior accuracy than the standard k-ε model for wall-bounded and adverse pressure gradients flows in boundary layers. The k-ε model does not perform well in boundary layers and requires additional terms to be added to the governing equations to produce boundary layer profiles.
© Mathematics & Numerics:
The standard k-ε model involves a two equation coupled differential system, which can lead to stiff algebraic system for non-diffusive & accurate flow solver like AcuSolve. Some numerically dissipative solvers can easily handle such stiff differential equations. On the contrary, the SA model possess a well-behaved one equation differential system.