Cone crusher performance evaluation using DEM simulations and laboratory experiments for model validation

CorinneB_21985
CorinneB_21985 New Altair Community Member
edited November 2021 in Altair HyperWorks

AUTHOR(S)

E. Hulthen, J. Quist, M. Evertsson, M. Johansson

PUBLISHER

Elsevier

SOURCE

Minerals Engineering

YEAR

ABSTRACT

Cone crushers are commonly used for secondary and tertiary crushing stages in the aggregate and mining industry. It has previously been demonstrated that the discrete element method (DEM) can be used to simulate rock breakage in crushers using a variety of modelling techniques. In order to provide confidence in the simulation results the DEM models need to be validated against experimental data. Such validation efforts are scarcely reported in the existing literature and there are no standardized procedures defined. In this paper a laboratory cone crusher is simulated using DEM and the results are compared with laboratory experiments.The rock material is modelled using the Bonded Particle Model approach calibrated against single particle breakage experiments. Two case simulations have been performed investigating the influence of eccentric speed. The laboratory crusher is a Morgårdshammar B90 cone crusher that has been equipped with custom machined liners, variable speed drive and a National Instruments data acquisition system. The results provide novel insight regarding the stochastic flow behaviour of particles when exited by the mantle at high frequency. The estimated product size distribution matches the experimental results relatively well when evaluating the corresponding coarse region that is feasible to calculate from the DEM product discharge data.

KEYWORDS

cone crusher, experiment, Modelling, Simulation, validation