Validation Performance Issue

AtiahKhoirunnisa
AtiahKhoirunnisa New Altair Community Member
edited November 2024 in Community Q&A

Hi everyone,

I have a question, when i apply both cross validation and split validation at one time using multiply, the performance results of either cross validation operator or split validation operator have difference accuracy with when i only apply one of cross validation or split validation separately ( i mean i enable one of them ), why ? I provide both two scripts one for when apply both and one of only cross validation

*** This one script for process when apply both cross val and split val
<?xml version="1.0" encoding="UTF-8"?><process version="9.3.001">
  <operator activated="true" class="retrieve" compatibility="9.3.001" expanded="true" height="68" name="Retrieve Customer Data" origin="GENERATED_SAMPLE" width="90" x="45" y="136">
    <parameter key="repository_entry" value="//Samples/Templates/Churn Modeling/Customer Data"/>
  </operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="9.3.001">
  <operator activated="true" class="set_role" compatibility="9.3.001" expanded="true" height="82" name="Set Role" origin="GENERATED_SAMPLE" width="90" x="179" y="85">
    <parameter key="attribute_name" value="ChurnIndicator"/>
    <parameter key="target_role" value="label"/>
    <list key="set_additional_roles"/>
  </operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="9.3.001">
  <operator activated="true" class="numerical_to_binominal" compatibility="9.3.001" expanded="true" height="82" name="Numerical to Binominal" origin="GENERATED_SAMPLE" width="90" x="313" y="85">
    <parameter key="attribute_filter_type" value="single"/>
    <parameter key="attribute" value="ChurnIndicator"/>
    <parameter key="attributes" value=""/>
    <parameter key="use_except_expression" value="false"/>
    <parameter key="value_type" value="numeric"/>
    <parameter key="use_value_type_exception" value="false"/>
    <parameter key="except_value_type" value="real"/>
    <parameter key="block_type" value="value_series"/>
    <parameter key="use_block_type_exception" value="false"/>
    <parameter key="except_block_type" value="value_series_end"/>
    <parameter key="invert_selection" value="false"/>
    <parameter key="include_special_attributes" value="true"/>
    <parameter key="min" value="0.0"/>
    <parameter key="max" value="0.5"/>
  </operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="9.3.001">
  <operator activated="true" class="concurrency:cross_validation" compatibility="8.2.000" expanded="true" height="145" name="Cross Validation" origin="GENERATED_SAMPLE" width="90" x="514" y="34">
    <parameter key="split_on_batch_attribute" value="false"/>
    <parameter key="leave_one_out" value="false"/>
    <parameter key="number_of_folds" value="10"/>
    <parameter key="sampling_type" value="automatic"/>
    <parameter key="use_local_random_seed" value="true"/>
    <parameter key="local_random_seed" value="1992"/>
    <parameter key="enable_parallel_execution" value="true"/>
    <process expanded="true">
      <operator activated="true" class="sample" compatibility="9.3.001" expanded="true" height="82" name="Sample" origin="GENERATED_SAMPLE" width="90" x="45" y="34">
        <parameter key="sample" value="relative"/>
        <parameter key="balance_data" value="true"/>
        <parameter key="sample_size" value="100"/>
        <parameter key="sample_ratio" value="0.1"/>
        <parameter key="sample_probability" value="0.1"/>
        <list key="sample_size_per_class"/>
        <list key="sample_ratio_per_class">
          <parameter key="true" value="1.0"/>
          <parameter key="false" value="0.02"/>
        </list>
        <list key="sample_probability_per_class">
          <parameter key="false" value="0.02"/>
          <parameter key="true" value="1.0"/>
        </list>
        <parameter key="use_local_random_seed" value="false"/>
        <parameter key="local_random_seed" value="1992"/>
      </operator>
      <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.3.001" expanded="true" height="82" name="Decision Tree" origin="GENERATED_SAMPLE" width="90" x="313" y="34">
        <parameter key="criterion" value="gain_ratio"/>
        <parameter key="maximal_depth" value="20"/>
        <parameter key="apply_pruning" value="true"/>
        <parameter key="confidence" value="0.25"/>
        <parameter key="apply_prepruning" value="true"/>
        <parameter key="minimal_gain" value="0.1"/>
        <parameter key="minimal_leaf_size" value="2"/>
        <parameter key="minimal_size_for_split" value="4"/>
        <parameter key="number_of_prepruning_alternatives" value="3"/>
      </operator>
      <connect from_port="training set" to_op="Sample" to_port="example set input"/>
      <connect from_op="Sample" from_port="example set output" to_op="Decision Tree" to_port="training set"/>
      <connect from_op="Decision Tree" from_port="model" to_port="model"/>
      <portSpacing port="source_training set" spacing="0"/>
      <portSpacing port="sink_model" spacing="0"/>
      <portSpacing port="sink_through 1" spacing="0"/>
      <description align="left" color="yellow" colored="false" height="393" resized="false" width="217" x="10" y="10">&lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; Many more customers stay than churn (hopefully!). In order for our model to learn how churners behave, we re-balance the data to focus on the case we're interested in. This is like a magnifying glass on churn!&lt;br&gt;&lt;br&gt;Take a look at the 'Sample' operator.</description>
      <description align="left" color="green" colored="true" height="395" resized="false" width="234" x="242" y="10">&lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; Let's now add a model trainer, like a Decision Tree.&lt;br&gt;&lt;br&gt;Try different values for the parameters, in particular, the 'minimal gain'. The 'Wisdom of the Crowds' recommendation helps you find reasonable values.</description>
    </process>
    <process expanded="true">
      <operator activated="true" class="apply_model" compatibility="9.3.001" expanded="true" height="82" name="Apply Model" origin="GENERATED_SAMPLE" width="90" x="112" y="34">
        <list key="application_parameters"/>
        <parameter key="create_view" value="false"/>
      </operator>
      <operator activated="true" class="performance_binominal_classification" compatibility="9.3.001" expanded="true" height="82" name="Performance (Binominal Classification)" origin="GENERATED_SAMPLE" width="90" x="246" y="34">
        <parameter key="manually_set_positive_class" value="false"/>
        <parameter key="main_criterion" value="first"/>
        <parameter key="accuracy" value="true"/>
        <parameter key="classification_error" value="false"/>
        <parameter key="kappa" value="false"/>
        <parameter key="AUC (optimistic)" value="false"/>
        <parameter key="AUC" value="false"/>
        <parameter key="AUC (pessimistic)" value="false"/>
        <parameter key="precision" value="false"/>
        <parameter key="recall" value="false"/>
        <parameter key="lift" value="false"/>
        <parameter key="fallout" value="false"/>
        <parameter key="f_measure" value="false"/>
        <parameter key="false_positive" value="false"/>
        <parameter key="false_negative" value="false"/>
        <parameter key="true_positive" value="false"/>
        <parameter key="true_negative" value="false"/>
        <parameter key="sensitivity" value="false"/>
        <parameter key="specificity" value="false"/>
        <parameter key="youden" value="false"/>
        <parameter key="positive_predictive_value" value="false"/>
        <parameter key="negative_predictive_value" value="false"/>
        <parameter key="psep" value="false"/>
        <parameter key="skip_undefined_labels" value="true"/>
        <parameter key="use_example_weights" value="true"/>
      </operator>
      <connect from_port="model" to_op="Apply Model" to_port="model"/>
      <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
      <connect from_op="Apply Model" from_port="labelled data" to_op="Performance (Binominal Classification)" to_port="labelled data"/>
      <connect from_op="Performance (Binominal Classification)" from_port="performance" to_port="performance 1"/>
      <portSpacing port="source_model" spacing="0"/>
      <portSpacing port="source_test set" spacing="0"/>
      <portSpacing port="source_through 1" spacing="0"/>
      <portSpacing port="sink_test set results" spacing="0"/>
      <portSpacing port="sink_performance 1" spacing="0"/>
      <portSpacing port="sink_performance 2" spacing="0"/>
      <description align="left" color="red" colored="true" height="390" resized="false" width="259" x="92" y="10">&lt;br/&gt;&lt;br/&gt;&lt;br/&gt;&lt;br/&gt;&lt;br/&gt;&lt;br/&gt;&lt;br/&gt;&lt;br/&gt;&lt;br/&gt;The model trained on the training data is applied to the independent test data set and the model performance is calculated.&lt;br&gt;&lt;br&gt;The performance values obtained on the different folds of the cross-validation are finally averaged to produce an average performance measure as well as a measure of its dispersion - which gives an estimate of the model stability when applied to different data samples.</description>
    </process>
  </operator>
</process>
</code><?xml version="1.0" encoding="UTF-8"?><process version="9.3.001">
  <operator activated="true" class="retrieve" compatibility="9.3.001" expanded="true" height="68" name="Retrieve Customer Data" origin="GENERATED_SAMPLE" width="90" x="45" y="136">
    <parameter key="repository_entry" value="//Samples/Templates/Churn Modeling/Customer Data"/>
  </operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="9.3.001">
  <operator activated="true" class="set_role" compatibility="9.3.001" expanded="true" height="82" name="Set Role" origin="GENERATED_SAMPLE" width="90" x="179" y="85">
    <parameter key="attribute_name" value="ChurnIndicator"/>
    <parameter key="target_role" value="label"/>
    <list key="set_additional_roles"/>
  </operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="9.3.001">
  <operator activated="true" class="numerical_to_binominal" compatibility="9.3.001" expanded="true" height="82" name="Numerical to Binominal" origin="GENERATED_SAMPLE" width="90" x="313" y="85">
    <parameter key="attribute_filter_type" value="single"/>
    <parameter key="attribute" value="ChurnIndicator"/>
    <parameter key="attributes" value=""/>
    <parameter key="use_except_expression" value="false"/>
    <parameter key="value_type" value="numeric"/>
    <parameter key="use_value_type_exception" value="false"/>
    <parameter key="except_value_type" value="real"/>
    <parameter key="block_type" value="value_series"/>
    <parameter key="use_block_type_exception" value="false"/>
    <parameter key="except_block_type" value="value_series_end"/>
    <parameter key="invert_selection" value="false"/>
    <parameter key="include_special_attributes" value="true"/>
    <parameter key="min" value="0.0"/>
    <parameter key="max" value="0.5"/>
  </operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="9.3.001">
  <operator activated="true" class="multiply" compatibility="9.3.001" expanded="true" height="103" name="Multiply" width="90" x="380" y="187"/>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="9.3.001">
  <operator activated="true" class="split_validation" compatibility="9.3.001" expanded="true" height="124" name="Validation" width="90" x="514" y="289">
    <parameter key="create_complete_model" value="false"/>
    <parameter key="split" value="relative"/>
    <parameter key="split_ratio" value="0.7"/>
    <parameter key="training_set_size" value="100"/>
    <parameter key="test_set_size" value="-1"/>
    <parameter key="sampling_type" value="automatic"/>
    <parameter key="use_local_random_seed" value="true"/>
    <parameter key="local_random_seed" value="1992"/>
    <process expanded="true">
      <operator activated="true" class="sample" compatibility="9.3.001" expanded="true" height="82" name="Sample (2)" origin="GENERATED_SAMPLE" width="90" x="45" y="34">
        <parameter key="sample" value="relative"/>
        <parameter key="balance_data" value="true"/>
        <parameter key="sample_size" value="100"/>
        <parameter key="sample_ratio" value="0.1"/>
        <parameter key="sample_probability" value="0.1"/>
        <list key="sample_size_per_class"/>
        <list key="sample_ratio_per_class">
          <parameter key="true" value="1.0"/>
          <parameter key="false" value="0.02"/>
        </list>
        <list key="sample_probability_per_class">
          <parameter key="false" value="0.02"/>
          <parameter key="true" value="1.0"/>
        </list>
        <parameter key="use_local_random_seed" value="false"/>
        <parameter key="local_random_seed" value="1992"/>
      </operator>
      <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.3.001" expanded="true" height="103" name="Decision Tree (2)" origin="GENERATED_SAMPLE" width="90" x="313" y="34">
        <parameter key="criterion" value="gain_ratio"/>
        <parameter key="maximal_depth" value="20"/>
        <parameter key="apply_pruning" value="true"/>
        <parameter key="confidence" value="0.25"/>
        <parameter key="apply_prepruning" value="true"/>
        <parameter key="minimal_gain" value="0.1"/>
        <parameter key="minimal_leaf_size" value="2"/>
        <parameter key="minimal_size_for_split" value="4"/>
        <parameter key="number_of_prepruning_alternatives" value="3"/>
      </operator>
      <connect from_port="training" to_op="Sample (2)" to_port="example set input"/>
      <connect from_op="Sample (2)" from_port="example set output" to_op="Decision Tree (2)" to_port="training set"/>
      <connect from_op="Decision Tree (2)" from_port="model" to_port="model"/>
      <portSpacing port="source_training" spacing="0"/>
      <portSpacing port="sink_model" spacing="0"/>
      <portSpacing port="sink_through 1" spacing="0"/>
    </process>
    <process expanded="true">
      <operator activated="true" class="apply_model" compatibility="9.3.001" expanded="true" height="82" name="Apply Model (2)" origin="GENERATED_SAMPLE" width="90" x="112" y="34">
        <list key="application_parameters"/>
        <parameter key="create_view" value="false"/>
      </operator>
      <operator activated="true" class="performance_binominal_classification" compatibility="9.3.001" expanded="true" height="82" name="Performance (Binominal Classification) (2)" origin="GENERATED_SAMPLE" width="90" x="246" y="34">
        <parameter key="manually_set_positive_class" value="false"/>
        <parameter key="main_criterion" value="first"/>
        <parameter key="accuracy" value="true"/>
        <parameter key="classification_error" value="false"/>
        <parameter key="kappa" value="false"/>
        <parameter key="AUC (optimistic)" value="false"/>
        <parameter key="AUC" value="false"/>
        <parameter key="AUC (pessimistic)" value="false"/>
        <parameter key="precision" value="false"/>
        <parameter key="recall" value="false"/>
        <parameter key="lift" value="false"/>
        <parameter key="fallout" value="false"/>
        <parameter key="f_measure" value="false"/>
        <parameter key="false_positive" value="false"/>
        <parameter key="false_negative" value="false"/>
        <parameter key="true_positive" value="false"/>
        <parameter key="true_negative" value="false"/>
        <parameter key="sensitivity" value="false"/>
        <parameter key="specificity" value="false"/>
        <parameter key="youden" value="false"/>
        <parameter key="positive_predictive_value" value="false"/>
        <parameter key="negative_predictive_value" value="false"/>
        <parameter key="psep" value="false"/>
        <parameter key="skip_undefined_labels" value="true"/>
        <parameter key="use_example_weights" value="true"/>
      </operator>
      <connect from_port="model" to_op="Apply Model (2)" to_port="model"/>
      <connect from_port="test set" to_op="Apply Model (2)" to_port="unlabelled data"/>
      <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (Binominal Classification) (2)" to_port="labelled data"/>
      <connect from_op="Performance (Binominal Classification) (2)" from_port="performance" to_port="averagable 1"/>
      <portSpacing port="source_model" spacing="0"/>
      <portSpacing port="source_test set" spacing="0"/>
      <portSpacing port="source_through 1" spacing="0"/>
      <portSpacing port="sink_averagable 1" spacing="0"/>
      <portSpacing port="sink_averagable 2" spacing="0"/>
    </process>
  </operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="9.3.001">
  <operator activated="true" class="concurrency:cross_validation" compatibility="8.2.000" expanded="true" height="145" name="Cross Validation" origin="GENERATED_SAMPLE" width="90" x="514" y="34">
    <parameter key="split_on_batch_attribute" value="false"/>
    <parameter key="leave_one_out" value="false"/>
    <parameter key="number_of_folds" value="10"/>
    <parameter key="sampling_type" value="automatic"/>
    <parameter key="use_local_random_seed" value="true"/>
    <parameter key="local_random_seed" value="1992"/>
    <parameter key="enable_parallel_execution" value="true"/>
    <process expanded="true">
      <operator activated="true" class="sample" compatibility="9.3.001" expanded="true" height="82" name="Sample" origin="GENERATED_SAMPLE" width="90" x="45" y="34">
        <parameter key="sample" value="relative"/>
        <parameter key="balance_data" value="true"/>
        <parameter key="sample_size" value="100"/>
        <parameter key="sample_ratio" value="0.1"/>
        <parameter key="sample_probability" value="0.1"/>
        <list key="sample_size_per_class"/>
        <list key="sample_ratio_per_class">
          <parameter key="true" value="1.0"/>
          <parameter key="false" value="0.02"/>
        </list>
        <list key="sample_probability_per_class">
          <parameter key="false" value="0.02"/>
          <parameter key="true" value="1.0"/>
        </list>
        <parameter key="use_local_random_seed" value="false"/>
        <parameter key="local_random_seed" value="1992"/>
      </operator>
      <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.3.001" expanded="true" height="82" name="Decision Tree" origin="GENERATED_SAMPLE" width="90" x="313" y="34">
        <parameter key="criterion" value="gain_ratio"/>
        <parameter key="maximal_depth" value="20"/>
        <parameter key="apply_pruning" value="true"/>
        <parameter key="confidence" value="0.25"/>
        <parameter key="apply_prepruning" value="true"/>
        <parameter key="minimal_gain" value="0.1"/>
        <parameter key="minimal_leaf_size" value="2"/>
        <parameter key="minimal_size_for_split" value="4"/>
        <parameter key="number_of_prepruning_alternatives" value="3"/>
      </operator>
      <connect from_port="training set" to_op="Sample" to_port="example set input"/>
      <connect from_op="Sample" from_port="example set output" to_op="Decision Tree" to_port="training set"/>
      <connect from_op="Decision Tree" from_port="model" to_port="model"/>
      <portSpacing port="source_training set" spacing="0"/>
      <portSpacing port="sink_model" spacing="0"/>
      <portSpacing port="sink_through 1" spacing="0"/>
      <description align="left" color="yellow" colored="false" height="393" resized="false" width="217" x="10" y="10">&lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; Many more customers stay than churn (hopefully!). In order for our model to learn how churners behave, we re-balance the data to focus on the case we're interested in. This is like a magnifying glass on churn!&lt;br&gt;&lt;br&gt;Take a look at the 'Sample' operator.</description>
      <description align="left" color="green" colored="true" height="395" resized="false" width="234" x="242" y="10">&lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; &lt;br&gt; Let's now add a model trainer, like a Decision Tree.&lt;br&gt;&lt;br&gt;Try different values for the parameters, in particular, the 'minimal gain'. The 'Wisdom of the Crowds' recommendation helps you find reasonable values.</description>
    </process>
    <process expanded="true">
      <operator activated="true" class="apply_model" compatibility="9.3.001" expanded="true" height="82" name="Apply Model" origin="GENERATED_SAMPLE" width="90" x="112" y="34">
        <list key="application_parameters"/>
        <parameter key="create_view" value="false"/>
      </operator>
      <operator activated="true" class="performance_binominal_classification" compatibility="9.3.001" expanded="true" height="82" name="Performance (Binominal Classification)" origin="GENERATED_SAMPLE" width="90" x="246" y="34">
        <parameter key="manually_set_positive_class" value="false"/>
        <parameter key="main_criterion" value="first"/>
        <parameter key="accuracy" value="true"/>
        <parameter key="classification_error" value="false"/>
        <parameter key="kappa" value="false"/>
        <parameter key="AUC (optimistic)" value="false"/>
        <parameter key="AUC" value="false"/>
        <parameter key="AUC (pessimistic)" value="false"/>
        <parameter key="precision" value="false"/>
        <parameter key="recall" value="false"/>
        <parameter key="lift" value="false"/>
        <parameter key="fallout" value="false"/>
        <parameter key="f_measure" value="false"/>
        <parameter key="false_positive" value="false"/>
        <parameter key="false_negative" value="false"/>
        <parameter key="true_positive" value="false"/>
        <parameter key="true_negative" value="false"/>
        <parameter key="sensitivity" value="false"/>
        <parameter key="specificity" value="false"/>
        <parameter key="youden" value="false"/>
        <parameter key="positive_predictive_value" value="false"/>
        <parameter key="negative_predictive_value" value="false"/>
        <parameter key="psep" value="false"/>
        <parameter key="skip_undefined_labels" value="true"/>
        <parameter key="use_example_weights" value="true"/>
      </operator>
      <connect from_port="model" to_op="Apply Model" to_port="model"/>
      <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
      <connect from_op="Apply Model" from_port="labelled data" to_op="Performance (Binominal Classification)" to_port="labelled data"/>
      <connect from_op="Performance (Binominal Classification)" from_port="performance" to_port="performance 1"/>
      <portSpacing port="source_model" spacing="0"/>
      <portSpacing port="source_test set" spacing="0"/>
      <portSpacing port="source_through 1" spacing="0"/>
      <portSpacing port="sink_test set results" spacing="0"/>
      <portSpacing port="sink_performance 1" spacing="0"/>
      <portSpacing port="sink_performance 2" spacing="0"/>
      <description align="left" color="red" colored="true" height="390" resized="false" width="259" x="92" y="10">&lt;br/&gt;&lt;br/&gt;&lt;br/&gt;&lt;br/&gt;&lt;br/&gt;&lt;br/&gt;&lt;br/&gt;&lt;br/&gt;&lt;br/&gt;The model trained on the training data is applied to the independent test data set and the model performance is calculated.&lt;br&gt;&lt;br&gt;The performance values obtained on the different folds of the cross-validation are finally averaged to produce an average performance measure as well as a measure of its dispersion - which gives an estimate of the model stability when applied to different data samples.</description>
    </process>
  </operator>
</process>
</pre><div>****This script below is for only cross validation</div><pre class="CodeBlock"><code>

Thank you

Welcome!

It looks like you're new here. Sign in or register to get started.

Best Answer

Answers

  • varunm1
    varunm1 New Altair Community Member
    Hello @Atiah

    Did you selected set local random seed in cross validation and split validation operators? If you do this, your results doesn't change.
  • varunm1
    varunm1 New Altair Community Member
    edited September 2019
    @sgenzer or @Tghadially can you help in checking the process in rapidminer by copying XML code from here? I am having an issue from yesterday, not sure why the copied code is not producing a process in RM.

    Thanks
  • lionelderkrikor
    lionelderkrikor New Altair Community Member
    Hi @varunm1,

    After checking the XMLs, the XMLs seems to be invalid because there are multiple lines with : 
    <?xml version="1.0" encoding="UTF-8"?><process version="9.3.001">
     : 



    @Atiah Can you export your processes in .rmp files (via File -> Export Process)

    Thanks,

    Regards,

    Lionel

  • varunm1
    varunm1 New Altair Community Member
    @lionelderkrikor, this is the same case with others as well, yesterday I used XML from notepad still it had a similar pattern not sure why. The notepad I am referring is in this thread and I asked this user to provide .rmp.
    https://community.rapidminer.com/discussion/55602/testing-of-automodel#latest
  • sgenzer
    sgenzer
    Altair Employee
    hi all - yes I know this XML import/export thing is still very clunky. I apologize for this. The good news is that I am actually working now (i.e. this week!) on a new solution to this. It is a huge pain point for all.

    For now I recommend you attach the .rmp file to a discussion rather than cut-and-paste. It will import much better.

    Scott

  • AtiahKhoirunnisa
    AtiahKhoirunnisa New Altair Community Member
    Hello @varunm1 thank you for your help, yes it works, but can i have explanation why did
    it work like that, and what is local random seed exactly? 
    Thank you
  • AtiahKhoirunnisa
    AtiahKhoirunnisa New Altair Community Member
    Hello @varunm1 Thank you for your explanation, it is really helpful 

Welcome!

It looks like you're new here. Sign in or register to get started.

Welcome!

It looks like you're new here. Sign in or register to get started.