"Optimizing K-Means with Cross Validation"
hgwelec
New Altair Community Member
I tried to find something similar in example setups but didn't find something similar.
I am trying to figure out how to perform optimization of K-Means (finding the optimal number of k) through cross-validation. I tried using an XValidation operator but i cannot get it to work. Here is my setup which i wish to change :
<operator name="Root" class="Process" expanded="yes">
<operator name="CSVExampleSource" class="CSVExampleSource">
<parameter key="filename" value="/data-binary.csv"/>
<parameter key="label_name" value="class"/>
</operator>
<operator name="CorrelationMatrix" class="CorrelationMatrix">
</operator>
<operator name="OperatorChain" class="OperatorChain" expanded="yes">
<operator name="KMeans" class="KMeans">
<parameter key="k" value="12"/>
<parameter key="max_runs" value="50"/>
<parameter key="max_optimization_steps" value="500"/>
<parameter key="use_local_random_seed" value="true"/>
<parameter key="local_random_seed" value="8"/>
</operator>
<operator name="ClusterModelWriter" class="ClusterModelWriter">
<parameter key="cluster_model_file" value="/models/clusterout.clm"/>
</operator>
<operator name="ClusterCentroidEvaluator" class="ClusterCentroidEvaluator">
<parameter key="keep_example_set" value="true"/>
</operator>
</operator>
<operator name="ClusterModelReader" class="ClusterModelReader">
<parameter key="cluster_model_file" value="/models/clusterout.clm"/>
</operator>
</operator>
Could someone please help?
PS : I accidentally cross-posted this question to Getting started section but couldn't delete it!
Tagged:
0
Answers
-
Hi,
I have answered it there already. Too late I will close this thread.
Greetings,
Sebastian0