"Optimizing K-Means with Cross Validation"

hgwelec
hgwelec New Altair Community Member
edited November 2024 in Community Q&A

I tried to find something similar in example setups but didn't find something similar.

I am trying to figure out how to perform optimization of K-Means (finding the optimal number of k) through cross-validation. I tried using an XValidation operator but i cannot get it to work. Here is my setup which i wish to change :

<operator name="Root" class="Process" expanded="yes">
    <operator name="CSVExampleSource" class="CSVExampleSource">
        <parameter key="filename"  value="/data-binary.csv"/>
        <parameter key="label_name"  value="class"/>
    </operator>
    <operator name="CorrelationMatrix" class="CorrelationMatrix">
    </operator>
    <operator name="OperatorChain" class="OperatorChain" expanded="yes">
        <operator name="KMeans" class="KMeans">
            <parameter key="k"  value="12"/>
            <parameter key="max_runs"  value="50"/>
            <parameter key="max_optimization_steps"  value="500"/>
            <parameter key="use_local_random_seed"  value="true"/>
            <parameter key="local_random_seed"  value="8"/>
        </operator>
        <operator name="ClusterModelWriter" class="ClusterModelWriter">
            <parameter key="cluster_model_file"  value="/models/clusterout.clm"/>
        </operator>
        <operator name="ClusterCentroidEvaluator" class="ClusterCentroidEvaluator">
            <parameter key="keep_example_set"  value="true"/>
        </operator>
    </operator>
    <operator name="ClusterModelReader" class="ClusterModelReader">
        <parameter key="cluster_model_file"  value="/models/clusterout.clm"/>
    </operator>
</operator>

Could someone please help?

PS : I accidentally cross-posted this question to Getting started section but couldn't delete it!

Answers

  • land
    land New Altair Community Member
    Hi,
    I have answered it there already. Too late :) I will close this thread.

    Greetings,
      Sebastian

Welcome!

It looks like you're new here. Sign in or register to get started.

Welcome!

It looks like you're new here. Sign in or register to get started.