/MAT/LAW93 (ORTH_HILL) or (CONVERSE)

Block Format Keyword This law describes the orthotropic elastic behavior material with Hill plasticity and is applicable to shell and solid elements (/BRICK, /TETRA4 and /TETRA10).

It could be used with property set /PROP/TYPE11, /PROP/TYPE17, /PROP/TYPE51, /PROP/PCOMPP for shell and /PROP/TYPE6 for solid.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW93/mat_ID/unit_ID or /MAT/ORTH_HILL/mat_ID/unit_ID or /MAT/CONVERSE/mat_ID/unit_ID/
mat_title
ρi
E11 E22 E33 G12 ν12
G13 G23 ν13 ν23
Nrate VP Fcut
Curve input for yield if Nrate>0 , define Nrate plasticity function per line:
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
fct_IDi Fscalei ˙εi
Parameter input for yield:
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
σy QR1 CR1 QR2 CR2
Yield stress ratio for HILL criteria:
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
R11 R22 R12
R33 R13 R23

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

unit_ID Unit Identifier.

(Integer, maximum 10 digits)

mat_title Material title.

(Character, maximum 100 characters)

ρi Initial density.

(Real)

[kgm3]
E11 Young’s modulus in direction 11.

(Real)

[Pa]
E22 Young’s modulus in direction 22.

(Real)

[Pa]
E33 Young’s modulus in direction 33.

(Real)

[Pa]
G12 Shear modulus in direction 12.

(Real)

[Pa]
G13 Shear modulus in direction 13.

(Real)

[Pa]
G23 Shear modulus in direction 23.

(Real)

[Pa]
ν12 Poisson's ratio 12.

(Real)

ν13 Poisson's ratio 13.

(Real)

ν23 Poisson's ratio 23

(Real)

Nrate Number of yield function.
VP Strain rate choice flag.
= 1
Strain rate effect on yield stress depends on the plastic strain rate.
= 2 (Default)
Strain rate effect on yield depends on the total strain rate.
= 3
Strain rate effect on yield depends on the deviatoric strain rate.

(Integer)

Fcut Cutoff frequency for strain rate filtering.

Default = 1.0 x 104 (Real)

[Hz]
fct_IDi Plasticity curves ith function identifier (i=1, Nrate).

(Integer)

Fscalei Scale factor for ith function (i=1, Nrate).

Default = 1.0 (Real)

[Pa]
˙εi Strain rate for ith function (i=1, Nrate).

(Real)

[1s]
σy Initial yield stress.

Default = 1E30 (Real)

[Pa]
QR1 Parameter of hardening.

Default = 0.0 (Real)

[Pa]
CR1 Parameter of hardening.

Default = 0.0 (Real)

QR2 Parameter of hardening.

Default = 0.0 (Real)

[Pa]
CR2 Parameter of hardening.

Default = 0.0 (Real)

R11 Yield stress ratio in direction 11.

Default = 1.0 (Real)

R22 Yield stress ratio in direction 22.

Default = 1.0 (Real)

R33 Yield stress ratio in direction 33.

Default = 1.0 (Real)

R12 Yield stress ratio in direction 12.

Default = 1.0 (Real)

R13 Yield stress ratio in direction 13.

Default = 1.0 (Real)

R23 Yield stress ratio in direction 23.

Default = 1.0 (Real)

Example (Curve Input)

Comments

  1. The yield stress is compared to an equivalent stress in the orthotropic frame. For solid elements, this equivalent stress is defined as:
    σeq=F(σ22σ33)2+G(σ33σ11)2+H(σ11σ22)2+2Lσ223+2Mσ231+2Nσ212
    Where,
    F=12(1R222+1R2331R211)
    G=12(1R233+1R2111R222)
    H=12(1R222+1R2111R233)
    L=32R223
    M=32R231
    N=32R212
    Rii=σiiFσF
    Normal directions
    Rij=3σijFσF
    Shear directions
    σijF
    Yield stress in direction ij
    σF
    Global flow stress that can either be defined with a sum of Voce hardening, or can be tabulated (see below).
    Under plane-stress conditions, for shell elements, the equivalent yield stress becomes:
    σeq=(G+H)σ211+(F+H)σ2222Hσ11σ22+2Nσ212
  2. The yield function Φ will compare the Hill’s equivalent stress σeq to the flow stress σF as:
    Φ=σeqσF
    The two different ways to define the flow stress σF are: parameter input or curve input
    • For parameter input, the flow stress is defined with an initial yield stress and a double Voce hardening as:
      σF=σ0Y+R(εp)

      With R(εp)=2iQRi(1eCRiεp) .

    • For curve input, the parameters input values will be ignored.
      The yield can be defined with using stress versus plastic strain curve taking in account the strain rate effect. When the stress versus strain curves are defined, this is the default method for defining the hardening.
      1. If ˙ε˙εn , the yield is interpolated between fn and fn1 .
      2. If ˙ε˙ε1 function, f1 is used.
      3. Above ˙εmax , yield is extrapolated.


        Figure 1.
  3. For tabulated flow stress, the strain rate ˙ε computation depends on the value of the flag VP.
    • If VP= 1, the plastic strain rate is used
    • If VP= 2, the total strain rate is used
    • If VP= 3, the total strain rate is used

    In all cases the strain-rate computation includes a filtering. The cutoff frequency is automatically set for VP = 1. However, for VP = 1 or 3, you can input a cutoff frequency Fcut; otherwise, a default value will be set.