/MAT/LAW117
Block Format Keyword This law represents the constitutive relation of ductile adhesive materials in 2 modes for normal and tangential directions. This law models the elastic and failure response of the material.

Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW117/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
ρi | |||||||||
EN | ET | Imass | Idel | Irupt | |||||
Fct_TN | Fct_TT | TN | TT | Fscale_x | |||||
GIC | GIIC | EXP_G | EXP_BK | Gamma |
Definitions
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material identifier. (Integer, maximum 10 digits) |
|
unit_ID | (Optional) Unit Identifier. (Integer, maximum 10 digits) |
|
mat_title | Material title. (Character, maximum 100 characters) |
|
ρi | Initial density. (Real) |
[kgm3] |
EN | Stiffness normal to the plane of the cohesive
element. (Real) |
[Pam] |
ET | Stiffness in the plane of the cohesive
element. (Real) |
[Pam] |
Imass | Mass calculation flag.
(Integer) |
|
Idel | Failure flag indicating the number of
integration points to delete the element (between 1 and
4). Default = 1 (Integer) |
|
Irupt | Mixed mode displacement law flag.
(Real) |
|
Fct_TN | Function identifier of the peak traction in
normal direction versus element mesh
size. (Integer) |
|
Fct_TT | Function identifier of the peak traction in
tangential direction versus element mesh
size. (Integer) |
|
TN | Peak traction in normal direction (default =
0) or, Fct_TN ordinate scale factor (default = 1) (Real) |
[Pa] |
TT | Peak traction in tangential direction (default =
0) or, Fct_TT ordinate scale factor (default = 1) (Real) |
[Pa] |
Fscale_x | Fct_TN and
Fct_TT abscissa scale factor. Default = 1 (Real) |
[m] |
GIC | Energy release rate for mode I. (Real) |
[Pa.m] |
GIIC | Energy release rate for mode II. (Real) |
[Pa.m] |
EXP_B | Power law exponent for the mixed mode. Default = 2 (Real) |
|
EXP_BK | Benzeggage-Kenane exponent for the mixed
mode. (Real) |
|
Gamma | Gamma exponent for Benzeggage-Kenane
law. Default = 1 (Real) |
Example
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
Units
kg mm ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW117/1/1
CONNECT MATERIAL
# RHO_I
7.8E-6
# EN ET Imass Idel Irupt
5 1.2 0 1 0
# Fct_TN Fct_TT TN TT Fscale_x
0 0 2 0.7 0
# GIC GIIC EXP_B EXP_BK Gamma
1 1.75 2 2 1
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Comments
- Mode I refers to the normal direction and mode II refers to the shear direction. δI is the separation in normal direction equal to δzz direction. δII is equal to the separation in tangential direction δII=√δyz+δzx . The mixed mode displacement is referred to by δm .
- The damage initiation
displacement in mode I and mode II are respectively,
δ0I=TNEN
and
δ0II=TTET
and for the mixed mode:
(1) δ0m=δ0I⋅δ0II⋅√1+β2(δ0II)2+(β⋅δ0I)2With the mode mix β=δIIδI .
- The maximum displacement at
failure
δFm
can be calculated using either a Power law
for
Irupt=1:
(2) δFm=2(1+β2)δ0⋅[(ENGIC)EXP_G+(β⋅ETGIIC)EXP_G]−(1EXP_G)or, a Benzeggage-Kenane law for Irupt =2:(3) δFm=2δ0(11+β2⋅ENγ+β21+β2⋅ETγ)1γ⋅[GIC+(GIIC−GIC)(β2⋅ETEN+β2⋅ET)EXP_BK] - GIC and
GIIC are the energy release rates between the peak
traction and the maximum displacement for mode I and mode II, respectively.
GIC=TN⋅δFI2 and GIIC=TT⋅δFII2