Transient Analysis of Switched-Reluctance Motor Drive by FE Model Co-Simulation


Presentation by Lino Di Leonardo, University of L'Aquila.

This presentation showcases an analysis technique of electric motor drive based on transient simulation tools and embedded finite element motor modeling (co-simulation). A couple of software tools, Altair Flux and Activate, are employed suitably interfaced each other. The first one allows the computation of the motor electromagnetic behavior using a finite element model, while the second one allows the dynamic simulation of the control and feeding converter. The interacting use of these tools allows a detailed prediction of the motor transient behavior under a given control strategy and drive scheme. As test case a multi-phase Switched Reluctance motor for aerospace application is considered.

The results demonstrate that the co-simulation procedure allows taking into account not negligible phenomena, such as dynamic torque ripple, usually not considered in similar studies. Hence, co-simulation analysis represents a significant step for the integrate design of the motor and control, as well as a meaningful tool for electrical drives education.