Best Practices to define Time Step in Transient Analysis

Transient response analysis is used to calculate the response of a structure where the loads and responses are time-dependent.

In short terms, transient systems are solved according to the equation of motion:

TextDescription automatically generated

One of the main inputs for this type of analysis is the time step of the solution through the TSTEP card. In this article, we will cover best practices to define the parameters in TSTEP and understand how they can impact the accuracy of the solution, running time and file storage.


TSTEP Parameters

The TSTEP card defines parameters for control and intervals at which a solution will be generated and output in transient analysis. In this article, we will discuss the three main inputs for this card:

N - Number of time steps of value DT#.

DT – Time Increment

N0 – Skip factor for output. N0i-th step will be saved for output.



To run a certain model for 10s with outputs for every 0.5s, TSTEP should be defined as:

N = 20

DT = 0.5

The total time will be N x DT. Regarding N0 definition:

Using N0 = 1, the outputs will be at 0.0s, 0.5s, 1.0s, 1.5s, 2.0s, 2.5s, etc.

Using N0 = 2, the outputs will be at 0.0s, 0.5s, 1.5s, 2.5s, 3.5s, 4.5s, etc.


Guidelines for DT definition

Defining the time increment correctly can be the key to the accuracy of the solution, running time and saving disk space. Keep the following rules in mind:  


For short-duration events, such as half-sine shock, the time of loading will be on the order of 10ms to 50ms. The decay time will be dependent on the frequency content of the structure and the amount of damping. The lowest significant frequency (first eigenvalue) needs to be checked to ensure enough decay time has been allowed. An overall rule for the total time would be 5 to 10 times the event duration, to ensure the capture of the long-period motion.