Aircraft Radome Characterization via Multiphysics Simulation


Radomes protect antennas from structural damage due to wind, precipitation, and bird strikes. In aerospace applications, radomes often double as a nose cone and thus have a significant impact on the aerodynamics of the aircraft. While radomes should be designed not to affect the performance of the underlying antennas, they also must satisfy structural and aerodynamic requirements.

In this paper, we demonstrate a multiphysics approach to analysis of airborne radomes not only for electromagnetic (EM) performance, but also for structural, aerodynamic, and bird strike performances, as depicted in figure 1. We consider a radome constructed using composite fiberglass plies and a foam core, and coated with an anti-static coating, paint, and primer. A slotted waveguide array is designed at X-band to represent a weather radar antenna. The transmission loss of the radome walls is analyzed using a planar Green’s function approach. An asymptotic technique, Ray-Launching Geometric Optics (RL-GO), is used to accurately simulate the nose cone radome and compute transmission loss, boresight error, and sidelobe performance. In addition to EM analysis, Computational Fluid Dynamics (CFD) analysis is used to predict pressures resulting from high air speeds, which are then mapped to an implicit structural solution to assess structural integrity using the Finite Element Method (FEM). We also demonstrate damage prediction due to a “bird strike” impact using an explicit structural FEM solver. The multiphysics simulation techniques demonstrated in this paper will allow for early design validation and reduce the number of measurement iterations required before a radome is certified for installation.